1. Pharmacokinetic Study on Bruceoside A Revealed the Potential Role of Quassinoid Glycosides for the Anticancer Properties of Fructus Bruceae.

Abstract
Bruceoside A, an abundant quassinoid glycoside in Fructus Bruceae, was chosen for the pharmacokinetic study. It is the first case report on the pharmacokinetic study of quassinoid glycosides so far. A sensitive, accurate, and repeatable UHPLC-MS/MS method was developed for the determination of bruceoside A and its major metabolite. The results showed bruceoside A could be transformed into the potent anticancer component brusatol in vivo, rather than its direct deglycosylated metabolite bruceosin and the intestinal bacteria were proposed to take a potential role during such transformation. Based on the present study, it could be concluded that the quassinoid glycosides possessing weak activities in vitro could do contribution to the anticancer properties of Fructus Bruceae in vivo via transforming into more active metabolites.

2. Ameliorative effect of supercritical fluid extract of Chrysanthemum indicum Linnén against D-galactose induced brain and liver injury in senescent mice via suppression of oxidative stress, inflammation and apoptosis.
Journal of ethnopharmacology, 2019, 234, 44-56.

Abstract
ETHNOPHARMACOLOGICAL RELEVANCE:
Chrysanthemum indicum Linne (C. indicum), a healthy food and folk medicine in China for thousands of years, has been reported to exert heat-clearing and detoxifying effects and extensively applied to treat various symptoms such as inflammation diseases, hepatitis and headache.
AIM OF THIS STUDY:
The purpose of the present study was to investigate the protective effect of the supercritical carbon dioxide fluid extract from flowers and buds of C. indicum (CISCFE) on D-galactose-induced brain and liver damage during aging process and to illuminate the underlying mechanisms.
MATERIALS AND METHODS:
Mice were orally administrated with CISCFE (100, 150 and 300 mg/kg) after injection with D-galactose. 24 h after the last administration, the blood samples, whole brain and liver tissues
were collected for biochemical analysis, histological examination and western blot analysis. The body weight, spleen and thymus indexes, alanine transaminase (ALT), aspartate transaminase (AST), total antioxidant capacity (T-AOC), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), malondialdehyde (MDA) in brain and liver, interleukin-1β (IL-1β), interleukin-6 (IL-6), and necrosis factor-α (TNF-α) were detected. Besides, the expressions of Bax, Bcl-2 and cleaved caspase-3 were determined by western blot assay.

RESULTS:
The results indicated that CISCFE effectively increased the suppressed body weight, attenuated the decline of thymus and spleen indexes, and reduced the elevated levels of ALT and AST induced by D-gal. Furthermore, CISCFE might notably alleviate D-gal-induced abnormal alterations in structure and function of brain and liver dose-dependently via renewing normal antioxidant enzymes activities (SOD, CAT, GSH-Px), reducing MDA accumulation, decreasing inflammatory cytokines productions (IL-1β, IL-6, TNF-α), as well as attenuating the increase of Bax/Bcl-2 ratio and cleaved caspase-3 activation in the liver and brain.

CONCLUSIONS:
Taken together, our present results suggested that CISCFE treatment could effectively mitigate the D-gal-induced hepatic and cerebral injury, and the underlying mechanism might be tightly related to the decreased oxidative stress, inflammation and apoptosis, indicating CISCFE might be an alternative and promising agent for the treatment of aging and age-associated brain and liver diseases.

3. Synergistic antitumor effect of brusatol combined with cisplatin on colorectal cancer cells.
International Journal of Molecular Medicine, 2018, 41, 1447-1454.

Abstract
Colorectal cancer (CRC) is a common and life-threatening type of malignant cancer, which is associated with a high mortality rate. Cisplatin (CDDP) is a commonly used chemotherapy drug with significant side effects. Brusatol (BR) is one of the principal chemical compounds isolated from the Chinese herb Bruceae Fructus, which has been reported to markedly inhibit the proliferation of numerous cancer cell lines. The present study aimed to investigate the possible synergistic anticancer effects of CDDP combined with BR on CT-26 cells, and to evaluate the underlying mechanisms of action. The growth inhibitory effects of BR, CDDP, and BR and CDDP cotreatment on CT-26 cells were assessed by MTT assay. Cell apoptosis were determined by flow cytometry and western blot analysis. The results indicated that compared with single-agent treatment, cotreatment of CT-26 cells with CDDP and BR synergistically inhibited cell proliferation and increased cellular apoptosis. Furthermore, treatment of CT-26 cells with CDDP and BR resulted in a marked increase in the release of cytosolic cytochrome c, decreased expression of procaspase-3 and procaspase-9, and upregulation of the B-cell lymphoma 2 (Bcl-2)-associated X protein/Bcl-
2 ratio compared with treatment with BR or CDDP alone. These results strongly suggested that the combination of CDDP and BR was able to produce a synergistic antitumor effect in CRC cells, thus providing a solid foundation for further development of this combination regimen into an effective therapeutic method for CRC.

4. **Isorhynchophylline alleviates learning and memory impairments induced by aluminum chloride in mice.**

H.Q. Li, S.P. Ip, G.Q. Zheng, Y.F. Xian, Z.X. Lin

Chinese Medicine, 2018, 13, 29.

Abstract

Background: To evaluate the effect of Isorhynchophylline (IRN) on the learning and memory impairments induced by aluminum chloride (AlCl₃) in mice. **Methods:** Fifty male Balb-c mice (4-month-old) were randomly divided into five groups: control, AlCl₃ plus vehicle, AlCl₃ plus IRN (20 mg/kg), AlCl₃ plus IRN (40 mg/kg) and AlCl₃ plus donepezil (5 mg/kg). Learning and memory impairments were induced in mice by subcutaneously injecting with AlCl₃ (50 mg/kg) once a day for 8 consecutive weeks. At the same time, mice were intragastrically given vehicle or IRN (20 and 40 mg/kg) or donepezil (5 mg/kg) 30 min before each AlCl₃ injection. The spatial learning and memory function was assessed using radial arm maze. After sacrificed, the parameters of oxidative stress and cholinergic system in the brain tissues were examined with ELISA kits. Moreover, the expression of nuclear factor kappa B (NF-κB) signaling pathway was analyzed with western blotting. **Results:** The results showed that treatment with IRN could significantly ameliorate the cognitive deficits induced by AlCl₃ in mice. In addition, treatment with IRN was found to reduce the level of malondialdehyde, enhance the activities of superoxide dismutases and catalase, increase the level of glutathione, and markedly inhibit the activity of acetylcholinesterase (AChE) in the brain tissues of the AlCl₃-treated mice. Moreover, IRN significantly suppressed the phosphorylation of NF-κB p65 and IκBα in the brain tissues of AlCl₃-treated mice. However, IRN did not show significant effect on the activity of butyrylcholinesterase. **Conclusion:** Our findings demonstrated for the first time that IRN could alleviate learning and memory impairments induced by AlCl₃ in mice. The neuroprotective effect of IRN against AlCl₃-induced AD is probably mediated, at least in part, through inhibiting the AChE activity and reducing the oxidative damage of brain tissue via suppress the NF-κB signaling pathway. These results contributed to a better understanding of the in vivo anti-AD mechanism of IRN. It was concluded that IRN could protect the learning and memory function.
5. **Brucein D, a Naturally Occurring Tetracyclic Triterpene Quassinoid, Induces Apoptosis in Pancreatic Cancer through ROS-Associated PI3K/Akt Signaling Pathway.**

Abstract

Brucein D (BD), a major active quassinoid in Brucea javanica, has exhibited pronounced anticancer activities. However, the biologic mechanisms have not been fully explored. In this study, BD exhibited more potent cytotoxic effect on pancreatic cancer (PanCa) cell lines, while exerted weaker cytotoxic effects on GES-1 cells (non-tumorigenic). BD was shown to elicit apoptosis through inducing both the intrinsic and extrinsic mitochondria-mediated caspase activations. Furthermore, the BD-induced apoptotic effects were dependent on the accumulated reactive oxygen species (ROS) and inactivation of PI3K/Akt signaling pathway. Pretreatment with tempol completely prevented the cellular apoptosis induced by BD, and recovered the inactivation of AKT, which suggested ROS essentially involved in BD-elicted apoptosis and down-regulation of PI3K/Akt pathway. In addition, the results obtained from orthotopic xenograft in nude mice were congruent with those of the in vitro investigations. These results support the notion that BD held good potential to be further developed into an effective pharmaceutical agent for the treatment of PanCa.

6. **Antidepressant-Like Effect of Isorhynchophylline in Mice.**

Y.F. Xian, D. Fan, S.P. Ip, Q.Q. Mao, Z.X. Lin

Neurochemical Research, 2017, 42, 678-685.

Abstract

isorhynchophylline (IRN), an oxindole alkaloid, has been identified as the main active ingredient responsible for the biological activities of Uncaria rhynchophylla (Miq) Miq ex Havil. (Rubiaceae). Previous studies in our laboratory have revealed that IRN possesses potent neuroprotective effects in different models of Alzheimer's disease. However, the antidepressant-like effects of IRN are remained unclear. The present study aims to evaluate the antidepressant-like effects of IRN. The antidepressant-like effects of IRN was determined by using animal models of depression including forced swimming and tail suspension tests. The acting mechanism was explored by determining the effect of IRN on the levels of monoamine neurotransmitters and the activities of monoamine oxidases. Intragastric administration of IRN at 10, 20 and 40 mg/kg for 7 days caused a significant reduction of immobility time in both forced swimming and tail suspension tests, while IRN did not stimulate locomotor activity in the open-field test. In addition, IRN treatment antagonized reserpine-induced ptosis and significantly enhanced the levels of monoamine neurotransmitters including norepinephrine (NE) and 5-hydroxytryptamine (5-HT), and the activity of monoamine oxidase A (MAO-A) in the hippocampus and frontal cortex of mice. These results suggest that the
antidepressant-like effects of IRN are mediated, at least in part, by the inhibition of monoamine oxidases.

7. **Neuroprotective effects of honokiol against beta-amyloid-induced neurotoxicity via GSK-3β and β-catenin signaling pathway in PC12 cells.**

Y.F. Xian, S.P. Ip, Q.Q. Mao, Z.X. Lin
Neurochemistry International, 2016, **97**, 8-14.

Abstract

Beta-amyloid (Aβ) accumulation, one of the most important pathogenic traits of Alzheimer's disease (AD), has been reported to induce neurotoxicity in vitro as well as in vivo. Honokiol, isolated from the bark of Magnolia officinalis, has neuroprotective effects in different models of AD in vivo and in vitro. However, the exact mechanism for its neuroprotective effect is not well understood. The present study aimed to investigate the molecular mechanisms underlying the protective action of honokiol against Aβ1-42-induced neurotoxicity in cultured rat pheochromocytoma (PC12) cells. The results revealed that honokiol protected PC12 cells from Aβ1-42 induced cytotoxicity with increases in cell viability, GSH production and Bcl-2 expression, but decreases in the release of lactate dehydrogenase and cytochrome c, the amount of DNA fragmentation and MDA level, as well as Bax expression. Mechanistic study showed that honokiol could inhibit the activation of glycogen synthase kinase (GSK)-3β, attenuate the nuclear accumulation of β-catenin and suppress the phosphorylation of β-catenin (Ser33/Ser37/Thr41 site) in the Aβ1-42-treated PC12 cells. These results indicate that the anti-oxidative and anti-apoptotic effects of honokiol in Aβ1-42-treated PC12 cells may be mediated, at least in part, by regulation the GSK-3β and β-catenin signaling pathways.

8. **Sonodynamic action of curcumin on foodborne bacteria Bacillus cereus and Escherichia coli.**

Ultrasonics, 2015, **62**, 75-79.

Abstract

Bacterial contamination is an important cause of foodborne diseases. The present study aimed to investigate sonodynamic action of curcumin on foodborne bacteria Bacillus cereus (B. cereus) and Escherichia coli (E. coli). The uptake of curcumin was measured for optimizing the concentration incubation time before ultrasound sonication, and colony forming units (CFU) were counted after ultrasound treatment. The chromosomal DNA fragmentation of bacteria was analyzed and the effect of hypoxic condition on the antibacterial efficacy of sonodynamic action of curcumin was also assessed in this study. The results showed that the maximum uptake of curcumin in B. cereus and
E. coli occurred in 50min after curcumin incubation. Curcumin had sonodynamic bactericidal activity in a curcumin dose-dependent manner, and 5.6-log reduction in CFU of B. cereus was observed after curcumin treatment (2.0 μM), however, only 2-log reduction in CFU of E. coli after 40μM curcumin treatment. No significant change in chromosomal DNA was found after the combined treatment of curcumin and ultrasound. The survival of B. cereus and E. coli after sonodynamic treatment in hypoxic group was significantly higher than that in normal oxygen group. These findings indicated that sonodynamic action of curcumin had significant inactivation effect on foodborne bacteria, and B. cereus was more sensitive to sonodynamic treatment of curcumin than E. coli. Sonodynamic antibacterial activity of curcumin might be dependent on the oxygen environment.

9. Honokiol improves learning and memory impairments induced by scopolamine in mice.

European Journal of Pharmacology, 2015, 760, 88-95

Abstract

Honokiol, a lignan isolated from the bark of Magnolia officinalis, has been reported to ameliorate the learning and memory impairments in senesed (SAMP8) mice. However, whether honokiol could improve scopolamine (SCOP)-induced learning and memory deficits in mice is still unknown. In this study, we aimed to investigate whether honokiol could reverse the SCOP-induced learning and memory impairments in mice and to elucidate its underlying mechanisms of action. Mice were given daily intraperitoneal injection of honokiol (10 and 20mg/kg) for 21 consecutive days. The results showed that honokiol significantly improved spatial learning and memory function (as assessed by the Morris water maze test) in the SCOP-treated mice. In addition, treatment with honokiol significantly decreased the protein and mRNA levels of interleukin (IL)-1β and the activity of acetylcholinesterase (AChE), while significantly increased the protein and mRNA levels of IL-10, and the level of acetylcholine (Ach) in the brain of the SCOP-treated mice. Moreover, honokiol also significantly suppressed the production of prostaglandin E 2 (PGE2) and mRNA expression of cyclooxygenase-2 (COX-2) in the brain of the SCOP-treated mice. Mechanistic investigations revealed that honokiol could markedly reverse the amount of phosphorylated Akt and extracellular regulated kinases 1/2 (ERK1/2) changes in the brain of the SCOP-treated mice. These results amply demonstrated that honokiol could improve learning and memory impairments induced by SCOP in mice, and the protective action may be mediated, at least in part, by inhibition of AChE activity, and amelioration of the neuroinflammatory processes in the SCOP-treated mice.

Q.Q. Mao, Z. Huang, X.M. Zhong, Y.F. Xian, S.P. Ip *

*Corresponding author.

Cellular and Molecular Neurobiology, 2014, 34, 403-308

Abstract

Previous studies in our laboratory have demonstrated that piperine produced antidepressant-like action in various mouse models of behavioral despair, which was related to the serotonergic system. The present study aimed to examine the behavioral and biochemical effects of piperine in rats exposed to chronic unpredictable mild stress (CUMS). The results showed that CUMS caused depression-like behavior in rats, as indicated by the significant decrease in sucrose consumption and increase in immobility time in the forced swim test. In addition, it was found that serotonin (5-HT) and brain-derived neurotrophic factor (BDNF) contents in the hippocampus and frontal cortex were significantly decreased in CUMS-treated rats. Treating the animals with piperine significantly suppressed behavioral and biochemical changes induced by CUMS. The results suggest that piperine produces an antidepressant-like effect in CUMS-treated rats, which is possibly mediated by increasing 5-HT and BDNF contents in selective brain tissues.

11. Isorhynchophylline treatment improves the amyloid-β-induced cognitive impairment in rats via inhibition of neuronal apoptosis and tau protein hyperphosphorylation

Journal of Alzheimer's Disease, 2014, 39, 331-346

Abstract

The progressive accumulation of amyloid-β (Aβ) in the form of senile plaques has been recognized as a key causative factor leading to the cognitive deficits seen in Alzheimer's disease (AD). Recent evidence indicates that Aβ induces neurotoxicity in the primary neuronal cultures as well as in the brain. Previously, we have demonstrated that isorhynchophylline (IRN), the major chemical ingredient of Uncaria rhynchophylla, possessed potent neuroprotective effects. In the present study, we aimed to investigate the effect of IRN on cognitive function, neuronal apoptosis, and tau protein hyperphosphorylation in the hippocampus of the Aβ25-35-treated rats and to elucidate its action mechanisms. We showed that Aβ25-35 injection caused spatial memory impairment, neuronal apoptosis, and tau protein hyperphosphorylation. Treatment with IRN (20 or 40 mg/kg) for 21 days could significantly ameliorate the cognitive deficits induced by Aβ25-35 in the rats. In addition, IRN attenuated the Aβ25-35-induced neuronal apoptosis in hippocampus by down-regulating the protein and mRNA levels of the ratio of Bcl-2/Bax, cleaved caspase-3 and caspase-9, as well as suppressing the tau protein hyperphosphorylation at the Ser396, Ser404, and Thr205 sites.
Mechanistic study showed that IRN could inhibit the glycogen synthase kinase 3β (GSK-3β) activity, and activate the phosphorylation of phosphatidylinositol 3-kinase (PI3K) substrate Akt. These results indicate that down-regulation of GSK-3β activity and activation of PI3K/Akt signaling pathway are intimately involved in the neuroprotection of IRN. The experimental findings provide further evidence to affirm the potential of IRN as a worthy candidate for further development into a therapeutic agent for AD and other tau pathology-related neurodegenerative diseases.

12. Liquid Chromatography – Mass spectrometry method for the simultaneous determination and confirmation of seven active components in Chinese medicine Kumu injection

Abstract

Purpose: To develop and validate a simple and selective high performance liquid chromatography photo diode array mass spectrometry (HPLC-PDA-MS/MS) method for simultaneous determination and confirmation of seven major active alkaloids (6-Hydroxy-ß-Carboline-1-carboxylic acid, ß-Carboline-1-carboxylic acid, ß-Carboline-1-propanoic acid, 3-Methyldianthin-5,6-dione, 4-Methoxy-3-methyldianthin-5,6-dione, 5-Hydroxy-4-methoxydianthin-6-one, 4,5-Dimethoxydianthin-6-one) in Kumu injections (KMI)

Methods: For the analysis of the preparation, the optimal chromatographic condition was achieved on a Phenomenex Gemini C18 column with gradient elution of 25 mM aqueous ammonium acetate (pH = 4.0 adjusted by glacial acetate acid) and acetonitrile with flow rate at 1.0 mL/min, column temperature at 35oC and detection wavelengths at 245, 260 and 271 nm.

Results: Excellent linear behavior over the investigated concentration ranges was observed with regression coefficient (R2) > 0.9997 for all analytes. Intra- and inter-day precisions for all studied constituents ranged from 0.20 to 1.80 %. Recoveries of the assayed constituents were in the range of 98.73 to 100.34 %. The results showed the contents of these seven marker compounds differed significantly among different batches of KMI's from the same and different manufacturers.

Conclusion: The validated method was reliable, accurate, repeatable, and can be applied to routine quality assessment of these active components in KMI's.

13. Brain-derived neurotrophic factor signalling mediates the antidepressant-like effect of piperine in chronically stressed mice.

Q.Q. Mao, Z. Huang, X.M. Zhong, Y.F. Xian, S.P. Ip *

Behavioural Brain Research, 2014, 261, 140-145

Abstract

Previous studies in our laboratory have demonstrated that piperine produced antidepressant-like
action in various mouse models of behavioral despair. This study aimed to investigate the role of brain-derived neurotrophic factor (BDNF) signalling in the antidepressant-like effect of piperine in mice exposed to chronic unpredictable mild stress (CUMS). The results showed that CUMS caused depression-like behavior in mice, as indicated by the significant decrease in sucrose consumption and increase in immobility time in the forced swim test. It was also found that BDNF protein expression in the hippocampus and frontal cortex were significantly decreased in CUMS-treated mice. Chronic treatment of piperine at the dose of 10mg/kg significantly ameliorated behavioural deficits of CUMS-treated mice in the sucrose preference test and forced swim test. Piperine treatment also significantly decreased immobility time in the forced swim test in naive mice. In parallel, chronic piperine treatment significantly increased BDNF protein expression in the hippocampus and frontal cortex of both naive and CUMS-treated mice. In addition, inhibition of BDNF signalling by injection of K252a, an inhibitor of the BDNF receptor TrkB, significantly blocked the antidepressant-like effect of piperine in the sucrose preference test and forced swim test of CUMS-treated mice. Taken together, this study suggests that BDNF signalling is an essential mediator for the antidepressant-like effect of piperine.

14. Isorhynchophylline protects PC12 cells against beta-amyloid-induced apoptosis via PI3K/Akt signaling pathway

Abstract

The neurotoxicity of amyloid-β (Aβ) has been implicated as a critical cause of Alzheimer’s disease. Isorhynchophylline (IRN), an oxindole alkaloid isolated from Uncaria rhynchophylla, exerts neuroprotective effect against Aβ25–35-induced neurotoxicity in vitro. However, the exact mechanism for its neuroprotective effect is not well understood. The present study aimed to investigate the molecular mechanisms underlying the protective action of IRN against Aβ25–35-induced neurotoxicity in cultured rat pheochromocytoma (PC12) cells. Pretreatment with IRN significantly increased the cell viability, inhibited the release of lactate dehydrogenase and the extent of DNA fragmentation in Aβ25–35-treated cells. IRN treatment was able to enhance the protein levels of phosphorylated Akt (p-Akt) and glycogen synthase kinase-3β (p-GSK-3β). Lithium chloride blocked Aβ25–35-induced cellular apoptosis in a similar manner as IRN, suggesting that GSK-3β inhibition was involved in neuroprotective action of IRN. Pretreatment with LY294002 completely abolished the protective effects of IRN. Furthermore, IRN reversed Aβ25–35-induced attenuation in the level of phosphorylated cyclic AMP response element binding protein (p-CREB) and the effect of IRN could be blocked by the PI3K inhibitor. These experimental findings unambiguously suggested that the protective effect of IRN against Aβ25–35-induced apoptosis in PC12 cells was associated with the enhancement of p-CREB expression via PI3K/Akt/GSK-3β
signaling pathway.

15. Comparison the neuroprotective effect of Cortex Phellodendri Chinensis and Cortex Phellodendri Amurensis against beta-amyloid-induced neurotoxicity in PC12 cells

Phytomedicine, 2013, 20, 187-193

Abstract

Cortex Phellodendron chinensis (CPC) and Cortex Phellodendron amurensis (CPA) derived from the dried bark of Phellodendron chinense Schneid. or Phellodendron amurense Rupr., respectively, are used interchangeably in clinical practice under the name "Huang Bai" for centuries in Chinese medicine for the treatment of various inflammatory conditions. Previous study in our laboratory demonstrated that CPC and CPA had different anti-diarrheal, anti-bacterial and anti-inflammatory effects. In this present study, we aimed to compare the protective effect of ethanol extract of Cortex Phellodendri chinensis (ECPC) and Cortex Phellodendri Amurensis (ECPA) against beta-amyloid (Aβ)-induced neurotoxicity in PC12 cells, a typical model of Alzheimer's disease. The results showed that ECPC and ECPA contain four common chemical markers such as berberine, but palmatine and jatrorrhizin were not found in CPC in contrast to the presence in CPA. In addition, both ECPC and ECPA can significantly increase the cell viability in Aβ-treated PC12 cells. Moreover, ECPC and ECPA can markedly elevate the ratio of the protein and mRNA levels of Bcl-2/Bax, while remarkably decrease the release of cytochrome c, and the protein and mRNA expression of caspase-3. Interestingly, ECPA has better protective effect than ECPC against Aβ-induced neurotoxicity in PC12 cells. These results indicate that both ECPC and ECPA have potential protective effect against Aβ-induced neurotoxicity in PC12 cells, and ECPA is more potential of the two species to be used in traditional medicine as a neuroprotective agent for the treatment of AD. The neuroprotective effect of the two species may be mediated, at least in part, via suppressing of the cellular apoptosis.

Acknowledge to the support of Department of Health

16. Mechanistic study on the antidepressant-like effect of Danggui-Shaoyao-San, a Chinese herbal formula

Z. Huang, Q.Q. Mao, X.M. Zhong, Z.Y. Li, F.M. Qiu, S.P. Ip *

Abstract

Danggui-Shaoyao-San (DSS), a famous Chinese herbal formula, has been widely used in the
treatment of various diseases. Previous studies have shown that DSS produces antidepressant-like effect in rodents. This study aims to investigate the mechanism(s) underlying the antidepressant-like action of DDS. The results showed that DSS treatment significantly antagonized reserpine-induced ptosis in mice. In addition, DSS treatment significantly increased sucrose consumption in chronic unpredictable stress- (CUS-) treated mice. DSS treatment also markedly attenuated CUS-induced decreases in noradrenaline and dopamine concentrations in mouse brain. Furthermore, DSS treatment significantly reversed CUS-induced increase in serum malondialdehyde (MDA) content and decrease in serum superoxide dismutase (SOD) activity in mice. The results suggest that the antidepressant-like activity of DSS is probably mediated by the modulation of central monoamine neurotransmitter systems and the reduction of oxidative stress.

17. Quantitative analysis of biologically active ingredients of Five Seeds Combo by liquid chromatography-quadrupole time-of-flight mass spectrometry for quality control of commercial herbal product

Abstract

Five Seeds Combo (wu zi yan zong wan) is a traditional Chinese herbal formula composed of fructus Lycii, semen Cuscutae, fructus Rubi, semen Plantaginis, and fructus Schisandrae. This herbal prescription has been developed into herbal products by many pharmaceutical manufacturers for treating age-related symptoms. The present study aims to develop an analytical method for the quality control of this herbal drug. Nine active ingredients including schisantherin A, schisandrin B, schisandrin, schisandrin A, quercitrin, betaine, verbascoside, hyperoside, and kaempferol were selected as the targeted analytes for the analysis. By using liquid chromatogram/quadrupole time-of-flight mass spectrometry (MS), the nine chemical compounds were determined simultaneously from the chromatogram. The parameters for MS were optimized by orthogonal array testing and the best condition of the MS for the determination of the nine marker compounds was found to be 175, 75, and 700 V for fragmentor, skimmer, and voltage of capillary, respectively. The method validation showed that this analytical method had high precision and sensitivity (limit of quantitation was smaller than 10 ng/mL for most of the analytes). The method was found to be able to demonstrate the quality of Five Seeds Combo from different manufacturers.

18. Bioassay-Guided Isolation of Neuroprotective Compounds from Uncaria rhynchophylla against Beta-Amyloid-Induced Neurotoxicity

Y.F. Xian, Z.X. Lin, Q.Q. Mao, Z. Hu, M. Zhao, C.T. Che, S.P. Ip*

Abstract

Uncaria rhynchophylla is a component herb of many Chinese herbal formulae for the treatment of neurodegenerative diseases. Previous study in our laboratory has demonstrated that an ethanol extract of Uncaria rhynchophylla ameliorated cognitive deficits in a mouse model of Alzheimer’s disease induced by D-galactose. However, the active ingredients of Uncaria rhynchophylla responsible for the anti-Alzheimer’s disease activity have not been identified. This study aims to identify the active ingredients of Uncaria rhynchophylla by a bioassay-guided fractionation approach and explore the acting mechanism of these active ingredients by using a well-established cellular model of Alzheimer’s disease, beta-amyloid- (Aβ-) induced neurotoxicity in PC12 cells. The results showed that six alkaloids, namely, corynoxine, corynoxine B, corynoxeine, isorhynchophylline, isocorynoxeine, and rhynchophylline were isolated from the extract of Uncaria rhynchophylla. Among them, rhynchophylline and isorhynchophylline significantly decreased Aβ-induced cell death, intracellular calcium overloading, and tau protein hyperphosphorylation in PC12 cells. These results suggest that rhynchophylline and isorhynchophylline are the major active ingredients responsible for the protective action of Uncaria rhynchophylla against Aβ-induced neuronal toxicity, and their neuroprotective effect may be mediated, at least in part, by inhibiting intracellular calcium overloading and tau protein hyperphosphorylation.

19. Protective roles of Cordyceps on lung fibrosis in cellular and rat models

Journal of Ethnopharmacology, 2012, 143, 448-454

Abstract

ETHNOPHARMACOLOGICAL RELEVANCE: Cordyceps sinensis is a fungus used in traditional Chinese medicine as a tonic to soothe the lung for the treatment of fatigue and respiratory diseases. Idiopathic pulmonary fibrosis is a chronic, irreversible and debilitating lung disease showing fibroblast/myofibroblast expansion and excessive deposition of extracellular matrix in the interstitium leading to breathing difficulty. Our previous observation revealed a partial relief of lung fibrosis in patients suffering from severe acute respiratory syndrome (SARS). We hypothesize that Cordyceps has beneficial effects on lung fibrosis and the objective of this study is to explore the target(s) of Cordyceps in the relief of lung fibrosis in animal and cell models and to gain insight into its underlying mechanisms.

MATERIAL AND METHODS: A rat model of bleomycin (BLM)-induced lung fibrosis and a fibrotic cell model with transforming growth factor beta-1 induction were employed in the studies.

RESULTS: Reduction of infiltration of inflammatory cells, deposition of fibroblastic loci and collagen, formation of reactive oxygen species, and production of cytokines, as well as recovery from
imbalance of MMP-9/TIMP-1, were observed in fibrotic rats after treatment with Cordyceps in preventive (from the day of BLM administration) and therapeutic (from 14 days after BLM) regimens. In a fibrotic cell model with transforming growth factor beta-1 induction, the human lung epithelial A549 acquired a mesenchymal phenotype and an increase of vimentin expression with a concomitant decrease of E-cadherin. This epithelial-mesenchymal transition could be partially reverted by cordycepin, a major component of Cordyceps.

CONCLUSION: The findings provide an insight into the preventive and therapeutic potentials of Cordyceps for the treatment of lung fibrosis.

20. Schisandra chinensis reverses visceral hypersensitivity in a neonatal-maternal separated rat model

Phytotherapy, 2012, 19, 402-408

Abstract

Visceral hypersensitivity is an important characteristic feature of functional gastrointestinal disorders, such as irritable bowel syndrome (IBS). This study evaluated the effect of Schisandra chinensis on visceral hyperalgesia induced by neonatal maternal separation (NMS) in an IBS rat model. The visceromotor responses to colorectal balloon distension (CRD) were measured by abdominal withdrawal reflex (AWR) and electromyographic (EMG) activities. NMS control rats (receiving vehicle) underwent aggravated visceral pain in response to CRD as compared to normal rats, evidenced by the reduced pain threshold, enhanced AWR scores and EMG responses. Treatment with a 70% ethanol extract of S. chinensis (0.3g/kg and 1.5g/kg/day) for 7 days resulted in an increase in the pain threshold (NMS control: 19.1±1.0mmHg vs low-dose: 24.8±1.3mmHg and high-dose: 25.2±1.8mmHg, p<0.01), and abolished the elevated AWR and EMG responses to CRD in NMS rats (AUC values of EMG response curve were: 1952±202 in NMS control group vs 1074±90 in low-dose group and 1145±92 in high-dose group, p<0.001), indicating that S. chinensis could reverse the visceral hypersensitivity induced by early-life stress event. The result of ELSA measurement shows that the elevated serotonin (5-HT) level in the distal colon of NMS rats returned to normal level after treatment with S. chinensis. Moreover, the increase in pain threshold in rats treated with S. chinensis was associated with a decline of the mRNA level of 5-HT(3) receptor in the distal colon. All available results demonstrate that S. chinensis can reverse visceral hypersensitivity induced by neonatal-maternal separation, and the effect may be mediated through colonic 5-HT pathway in the rat.
21. Impact of the Herbal Medicine Sophora flavescens on the Oral Pharmacokinetics of Indinavir in Rats: The Involvement of CYP3A and P-Glycoprotein

Abstract

Sophora flavescens is a Chinese medicinal herb used for the treatment of gastrointestinal hemorrhage, skin diseases, pyretic stranguria and viral hepatitis. In this study the herb-drug interactions between S. flavescens and indinavir, a protease inhibitor for HIV treatment, were evaluated in rats. Concomitant oral administration of Sophora extract (0.158 g/kg or 0.63 g/kg, p.o.) and indinavir (40 mg/kg, p.o.) in rats twice a day for 7 days resulted in a dose-dependent decrease of plasma indinavir concentrations, with 55%-83% decrease in AUC(0-∞) and 38%-78% reduction in C(max). The CL (Clearance)/F (fraction of dose available in the systemic circulation) increased up to 7.4-fold in Sophora-treated rats. Oxymatrine treatment (45 mg/kg, p.o.) also decreased indinavir concentrations, while the ethyl acetate fraction of Sophora extract had no effect. Urinary indinavir (24-h) was reduced, while the fraction of indinavir in faeces was increased after Sophora treatment. Compared to the controls, multiple dosing of Sophora extract elevated both mRNA and protein levels of P-gp in the small intestine and liver. In addition, Sophora treatment increased intestinal and hepatic mRNA expression of CYP3A1, but had less effect on CYP3A2 expression. Although protein levels of CYP3A1 and CYP3A2 were not altered by Sophora treatment, hepatic CYP3A activity increased in the Sophora-treated rats. All available data demonstrated that Sophora flavescens reduced plasma indinavir concentration after multiple concomitant doses, possibly through hepatic CYP3A activity and induction of intestinal and hepatic P-gp. The animal study would be useful for predicting potential interactions between natural products and oral pharmaceutics and understanding the mechanisms prior to human studies. Results in the current study suggest that patients using indinavir might be cautioned in the use of S. flavescens extract or Sophora-derived products.

22. Peony glycosides reverse the effects of corticosterone on behavior and brain BDNF expression in rats

Q.Q. Mao, Z. Huang, S.P. Ip*, X.F. Xian, C.T. Che

Behavioural Brain Research, 2012, 277, 305-309

Abstract

Repeated injections of corticosterone (CORT) induce the dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, resulting in depressive-like behavior. This study aimed to examine the antidepressant-like effect and the possible mechanisms of total glycosides of peony (TGP) in the CORT-induced depression model in rats. The results showed that the 3-week CORT
injections induced the significant increase in serum CORT levels in rats. Repeated CORT injections also caused depression-like behavior in rats, as indicated by the significant decrease in sucrose consumption and increase in immobility time in the forced swim test. Moreover, it was found that brain-derived neurotrophic factor (BDNF) protein levels in the hippocampus and frontal cortex were significantly decreased in CORT-treated rats. Treatment of the rats with TGP significantly suppressed the depression-like behavior and increased brain BDNF levels in CORT-treated rats. The results suggest that TGP produces an antidepressant-like effect in CORT-treated rats, which is possibly mediated by increasing BDNF expression in the hippocampus and frontal cortex.

23. Comparison on anti-inflammatory effect of Cortex Phellodendri Chinensis and Cortex Phellodendri Amurensis in 12-O-tetradecanoylphorbol-acetate-induced ear edema in mice

X.F. Xian, Q.Q. Mao, S.P. Ip*, Z.X. Lin, C.T. Che

Journal of Ethnopharmacology, 2011, 137, 1425-1460

Abstract

ETHNOPHARMACOLOGICAL RELEVANCE: Cortex Phellodendri is derived from the dried bark of Phellodendron chinense Schneid. or Phellodendron amurense Rupr. Traditionally, Cortex Phellodendron Chinensis (CPC) and Cortex Phellodendron Amurensis (CPA) are used interchangeably under the name “Huang Bai” for the treatment of gastroenteritis, abdominal pain or diarrhea. The present study aims to compare the anti-inflammatory effect of ethanol extracts of Cortex Phellodendron Chinensis (ECPC) and Cortex Phellodendron Amurensis (ECPA) in a mouse model of inflammation induced by 12-O-tetradecanoylphorbol-acetate (TPA).

MATERIALS AND METHODS: The anti-inflammatory effect was evaluated by measuring the ear thickness, activity of myeloperoxidase (MPO) and the production reactive oxygen species (ROS). The anti-inflammatory mechanism was explored by determining the protein and mRNA levels of cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6.

RESULTS: The results showed that both ECPC and ECPA significantly decreased the ear thickness, MPO activity and the ROS level in mouse model of inflammation induced by TPA. In addition, ECPC and ECPA also remarkably inhibited the protein and mRNA levels of TNF-α, IL-1β, IL-6 and COX-2. Interestingly, ECPC has better anti-inflammatory effect than that of ECPA.

CONCLUSIONS: These results indicate that both ECPC and ECPA have potential anti-inflammatory effect on TPA-induced inflammatory in mice, and ECPC is more effective than ECPA. The anti-inflammatory effect of the herbal drugs may be mediated, at least in part, by down-regulating the mRNA expression of a panel of inflammatory mediators including TNF-α, IL-1β, IL-6 and COX-2.

Acknowledges to the support of Department of Health
24. Analgesic Effect of Coptis chinensis rhizomes (Coptidis Rhizoma) Extract on Rat Model of Irritable Bowel Syndrome

Y.W. Tjong, S.P. Ip, L. Lao, H.H. Fong, J.J. Sung, B. Berman, C.T. Che*

Journal of Ethnopharmacology, 2011, 135, 754-761

Abstract

ETHNOPHARMACOLOGICAL RELEVANCE: Coptis chinensis rhizomes (Coptidis Rhizoma, CR), also known as "Huang Lian", is a common component of traditional Chinese herbal formulae used for the relief of abdominal pain and diarrhea. Yet, the action mechanism of CR extract in the treatment of irritable bowel syndrome is unknown. Thus, the aim of our present study is to investigate the effect of CR extract on neonatal maternal separation (NMS)-induced visceral hyperalgesia in rats and its underlying action mechanisms.

MATERIALS AND METHODS: Male Sprague-Dawley rats were subjected to 3-h daily maternal separation from postnatal day 2 to day 21 to form the NMS group. The control group consists of unseparated normal (N) rats. From day 60, rats were administrated CR (0.3, 0.8 and 1.3 g/kg) or vehicle (Veh; 0.5% carboxymethylcellulose solution) orally for 7 days for the test and control groups, respectively.

RESULTS: Electromyogram (EMG) signals in response to colonic distension were measured with the NMS rats showing lower pain threshold and increased EMG activity than those of the unseparated (N) rats. CR dose-dependently increased pain threshold response and attenuated EMG activity in the NMS rats. An enzymatic immunoassay study showed that CR treatment significantly reduced the serotonin (5HT) concentration from the distal colon of NMS rats compared to the Veh (control) group. Real-time quantitative PCR and Western-blotting studies showed that CR treatment substantially reduced NMS induced cholecystokinin (CCK) expression compared with the Veh group.

CONCLUSIONS: These results suggest that CR extract robustly reduces visceral pain that may be mediated via the mechanism of decreasing 5HT release and CCK expression in the distal colon of rats.

25. Involvement of serotonergic system in the antidepressant-like effect of piperine

Q.Q. Mao, X.F. Xian, S.P. Ip*, C.T. Che

Neuro-Psychopharmacology & Biological Psychiatry, 2011, 35, 1144-1147

Abstract

Piperine is a major alkaloid of black pepper (Piper nigrum Linn.) and long pepper (P. longum Linn.), and its antidepressant-like effect has been previously demonstrated. The purpose of this study was to explore the possible contribution of the serotonergic system in the antidepressant-like effect of piperine in mice. The results showed that piperine significantly reduced the immobility time in
the forced swim test and tail suspension test in mice. The anti-immobility effect of piperine in the forced swim test and tail suspension test was completely abolished by pre-treating the mice with pCPA (an inhibitor of 5-HT synthesis). Piperine treatment also significantly potentiated the number of head-twitches of mice induced by 5-HTP (a metabolic precursor to 5-HT). In addition, the neurochemical assays showed that piperine produced a marked increase of 5-HT level in both the hippocampus and frontal cortex of mice. Taken together, these results clearly suggest that serotonergic system is involved in the antidepressant-like effect of piperine.

26. HPLC-MS analysis of Schisandra lignans and their metabolites in Caco-2 cell monolayer and rat everted gut sac models and in rat plasma

J.M. Yang, P.S.P. Ip, J.H.K. Yeung, C.T. Che*

Abstract

The absorption profiles of Schisandra chinensis were evaluated using the human Caco-2 cell monolayer and rat everted gut sac models, as well as in rat plasma. By analyzing the chromatographic and MSn characteristics of individual peak acquired by HPLC-DAD-APCI-MSn determination, thirteen lignans were identified as the major in vitro absorbable components of the Schisandra extract. Most of these compounds were also detected and identified in rat plasma after an oral administration of the Schisandra extract, except for angeloyl(tigloyl)gomisin H and angeloyl(tigloyl)gomisin Q, whose structures possess an ester group at the cyclooctadiene ring. In addition, four metabolites, corresponding to the hydroxylation and demethylation products of schisandrin and the hydrolysis derivative of angeloyl(tigloyl)gomisin Q, were tentatively identified. The results demonstrate that Schisandra lignans are the major absorbable components of this crude drug, and hydroxylation, demethylation and hydrolysis are important metabolic transformations of the absorbable lignans.

27. Inhibitory effect of schisandrin on spontaneous contraction of isolated rat colon

J.M. Yang, J.H.K. Yeung, S.P. Ip, C.T. Che*

Phytomedicine, 2011, 18, 998-1005

Abstract

This study examined the effect of schisandrin, one of the major lignans isolated from Schisandra chinensis, on spontaneous contraction in rat colon and its possible mechanisms. Schisandrin produced a concentration-dependent inhibition (EC50 = 1.66 μM) on the colonic spontaneous contraction. The relaxant effect of schisandrin could be abolished by the neuronal Na+ channel blocker tetrodotoxin (1 μM) but not affected by propranolol (1 μM), phentolamine (1 μM), atropine (1
μM) or nicotine desensitization, suggesting possible involvement of non-adrenergic non-cholinergic (NANC) transmitters released from enteric nerves. Nω-nitro-L-arginine methyl ester (100-300 μM), a nitric oxide synthase inhibitor, attenuated the schisandrin response. The role of nitric oxide (NO) was confirmed by an increase in colonic NO production after schisandrin incubation, and the inhibition on the schisandrin responses by soluble guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-α]-quinoxalin-1-one (1-30 μM). Non-nitrergic NANC components may also be involved in the action of schisandrin, as suggested by the significant inhibition of apamin on the schisandrin-induced responses. Pyridoxal phosphate-6-azo(benzene-2,4-disulfonic acid) tetrasodium salt hydrate (100 μM), a selective P2 purinoceptor antagonist, markedly attenuated the responses to schisandrin. In contrast, neither 8-cyclopentyl-1,3-dipropylxanthine, an antagonist for adenosine A1 receptors, nor chymotrypsin, a serine endopeptidase, affected the responses. All available results have demonstrated that schisandrin produced NANC relaxation on the rat colon, with the involvement of NO and acting via cGMP-dependent pathways. ATP, but not adenosine and VIP, likely plays a role in the non-nitrergic, apamin-sensitive component of the response.

28. A proteomic approach in investigating the hepatoprotective mechanism of schisandrin b: role of Raf kinase inhibitor protein

Y. Chen, S.P. Ip *, K.M. Ko, T.C.W. Poon, E.W.Y. Ng, P.B.S. Lai, Q.Q. Mao, Y.F. Xian, C.T. Che

Journal of Proteome Research, 2011, 10, 299–304

Abstract

To identify key proteins involved in the hepatoprotection afforded by Sch B, a proteomic approach was used to screen proteins that were specifically regulated by Sch B in mouse livers and the role of the proteins in the hepatoprotection was investigated. Thirteen proteins were specifically activated or suppressed by schisandrin B treatment. Among the thirteen proteins, Raf kinase inhibitor protein (RKIP) was postulated to be the key regulator involved in the development of hepatotoxin-induced cellular damage. The results indicated that the down-regulation of RKIP by antisense RKIP vector transfection led to the activation of Raf-1/MEK/ERK signaling pathway, as evidenced by increases of MEK/ERK phosphorylation and the level of nuclear factor erythroid 2-related factor 2 in the nucleus. The signaling effect produced by RKIP down-regulation resembled that triggered by schisandrin B, wherein both treatments resulted in a decrease in the extent of carbon tetrachloride-induced apoptotic cell death in AML12 hepatocytes. Over-expression of RKIP by sense RKIP transfection vector or the inhibition of MEK kinase by PD98059 were able to abrogate the cytoprotective effect of Sch B in the hepatocytes. The results indicate that schisandrin B triggers the Raf/MEK/ERK signaling pathway, presumably through down-regulating RKIP, thereby protecting against carbon tetrachloride-induced cytotoxicity.
29. Long-term treatment with a “Yang-invigorating’’ Chinese herbal formula, Wu-Zi-Yan-Zong-Wan, reduces mortality and liver oxidative damage in chronic alcohol intoxicated rats

Rejuvenation Research, 2010, 13, 459-467

Abstract

Long-term alcohol consumption has been reported to increase oxidative stress in multiple organs and accelerate the aging process. A previous study in our laboratory has shown that Wu-Zi-Yan-Zong-Wan, a “Yang-invigorating” Chinese herbal formula, protected against ethanol-induced toxicity in HepG2 cells transfected to express human CYP2E1, presumably by enhancing mitochondrial antioxidant status and functional ability. The present study aims to investigate whether Wu-Zi-Yan-Zong-Wan extract treatment can afford protection against chronic ethanol-induced oxidative stress (a major risk factor of aging) and mortality in rats. The effect of the extract (1.8 g, 4.5 g and 9 g raw materials/kg/day) on chronic ethanol hepatotoxicity was investigated in rats receiving steady intragastric infusion of ethanol-containing liquid diet. The results showed that long-term (42 days) herbal co-treatment protected against chronic ethanol-induced mortality and hepatotoxicity and in rats, as evidenced by decreased plasma transaminases activities. The extract also suppressed the pathological development of fatty liver, as assessed by histopathological examination and the ratio of liver weight to body weight. The hepatoprotection afforded by the extract was associated with decreases in the extents of reactive oxygen species production, lipid peroxidation, and oxidative modification of proteins, as well as the reversal of altered mitochondrial reduced glutathione level. The results suggest that the suppressive effect of Wu-Zi-Yan-Zong-Wan on chronic ethanol-induced oxidative stress and mortality may be attributed to the antioxidant action, particularly in mitochondria.

30. Chemical and biological differentiation of Cortex Phellodendri Chinensis and Cortex Phellodendri Amurensis

M.L. Chen, S.P. Ip *, Y.F. Xian, S.H. Tsai, J.Y. Yang, C.T. Che

Planta Medica, 2010, 76, 1530-1535

Abstract

The Chinese herbal drug Cortex Phellodendri is derived from two species of Phellodendron, P. chinensis Schneid. and P. amurense Rupr. Traditionally, Cortex Phellodendri Chinensis (CPC) and Cortex Phellodendri Amurensis (CPA) are used interchangeably because they are believed to share the same clinical efficacy. Berberine has been believed to be the active ingredient of the herbs. However, recent studies have shown that the content of berberine is much higher in CPC than in CPA. Interestingly, the majority of researches deal with CPA, the one with lower content of berberine. These observations arouse us to reconsider the active ingredients of Cortex
Phellodendri. In this study, two traditional usages (antidiarrhea and antibacteria) of Cortex Phellodendri were compared with the chemical analysis of the two herbs. The results suggest that berberine is one of the active ingredients for the antidiarrheal and antibacterial activities of the herbs, but other chemical ingredients are also involved in regulating the biological actions of the herbal drug. These chemical ingredients may have same or opposite effect as berberine. The effectiveness of the herbs is more likely to correlate to the content of total alkaloids rather than the content of berberine.

Acknowledge to the support of Department of Health

31. **Biochemical mechanism of Wu-Zi-Yan-Zong-Wan, a traditional Chinese herbal formula, against alcohol-induced oxidative damage in CYP2E1 cDNA-transfected HepG2 (E47) cells**

Abstract

Wu-Zi-Yan-Zong-Wan (WZ) is a traditional Chinese herbal formula which is commonly used for treating patients with “Yang deficiency”. In the present study, the effect of WZ on ethanol-induced toxicity in CYP2E1 cDNA-transfected HepG2 (E47) cells was investigated. WZ extract was obtained by extracting the herbal powder with 50% ethanol (v/v, in water) and used for all experiments. The results showed that the treatment with WZ extract (12.5-200 µg/mL) for 24 h dose-dependently protected against ethanol-induced toxicity in E47 cells, as evidenced by the enhanced cell viability and decreased extent of lactate dehydrogenase leakage. The cytoprotection against ethanol-induced toxicity was associated with decreases in the extents of reactive oxygen species production and lipid peroxidation, as well as increases in mitochondrial reduced glutathione and membrane potential. In addition, WZ extract treatment also suppressed the formation of DNA fragments in ethanol-intoxicated E47 cells. In conclusion, WZ extract was found to protect against the ethanol-induced toxicity in E47 cells, possibly by virtues of its antioxidant activity.

32. **Long-term treatment with peony glycosides reverses chronic unpredictable mild stress-induced depressive-like behavior via increasing expression of neurotrophins in rat brain**
Q.Q. Mao, Y.F. Xian, S.P. Ip*, S. H. Tsai, C.T. Che

Behavioural Brain Research. 2010, 210, 171-177

Abstract

The root part of Paeonia lactiflora Pall., commonly known as peony, is a commonly used Chinese herb for the treatment of depression-like disorders. Previous studies in our laboratory have
showed that total glycosides of peony (TGP) produced antidepressant-like action in various mouse models of behavioral despair. The present study aimed to investigate the mechanism(s) underlying the antidepressant-like action of TGP by measuring neurotrophins including brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in non-stressed and chronic unpredictable mild stress (CUMS)-treated rats. TGP (80 or 160 mg/kg/day) was administered by oral gavage to the animals for 5 weeks. The results showed that CUMS caused depression-like behavior in rats, as indicated by the significant decreases in sucrose consumption and locomotor activity (assessed by open-field test). In addition, it was found that BDNF contents in the hippocampus and frontal cortex were significantly decreased in CUMS-treated rats. CUMS treatment also significantly decreased the level of NGF in the frontal cortex of the animals. Daily intragastric administration of TGP (80 or 160 mg/kg/day) during the five weeks of CUMS significantly suppressed behavioral and biochemical changes induced by CUMS. Treating non-stressed animals with TGP (160 mg/kg) for 5 weeks also significantly increased BDNF contents in the hippocampus and frontal cortex, and NGF contents in the frontal cortex. The results suggest that the antidepressant-like action of TGP is mediated, at least in part, by increasing the expression of BDNF and NGF in selective brain tissues.

33. Quality assurance for Chinese herbal formulae: standardization of IBS-20, a 20-herb preparation

S.P. Ip, M. Zhao, Y.F. Xian, M.L. Chen, Y.Y. Zong, Y.W. Tjong, S.H. Tsai, J.J. Sung, A
Bensoussan, B. Berman, H.H. Fong, C.T. Che

Chinese Medicine, 2010, 5:8

Abstract

BACKGROUND: The employment of well characterized test samples prepared from authenticated, high quality medicinal plant materials is key to reproducible herbal research. The present study aims to demonstrate a quality assurance program covering the acquisition, botanical validation, chemical standardization and good manufacturing practices (GMP) production of IBS-20, a 20-herb Chinese herbal formula under study as a potential agent for the treatment of irritable bowel syndrome. METHODS: Purity and contaminant tests for the presence of toxic metals, pesticide residues, mycotoxins and microorganisms were performed. Qualitative chemical fingerprint analysis and quantitation of marker compounds of the herbs, as well as that of the IBS-20 formula was carried out with high-performance liquid chromatography (HPLC). Extraction and manufacture of the 20-herb formula were carried out under GMP. Chemical standardization was performed with liquid chromatography-mass spectrometry (LC-MS) analysis. Stability of the formula was monitored with HPLC in real time. RESULTS: Quality component herbs, purchased from a GMP supplier were botanically and chemically authenticated and quantitative HPLC profiles (fingerprints) of each component herb and of the composite formula were established. An aqueous extract of the mixture of the 20 herbs was prepared and formulated into IBS-20, which was chemically standardized by
LC-MS, with 20 chemical compounds serving as reference markers. The stability of the formula was monitored and shown to be stable at room temperature. CONCLUSION: A quality assurance program has been developed for the preparation of a standardized 20-herb formulation for use in the clinical studies for the treatment of irritable bowel syndrome (IBS). The procedures developed in the present study will serve as a protocol for other poly-herbal Chinese medicine studies.

34. Determination of aflatoxins in Chinese medicinal herbs by high-performance liquid chromatography using immunoaffinity column cleanup. Improvement of recovery

S.P. Ip, C.T. Che*

Journal of Chromatography A, 2006, 1135, 241-244

Abstract

Although analytical methods are available for the determination of aflatoxins in medicinal herbs, none of them can be applied satisfactorily to all sample matrices. The difficulty arises from the complex chemical composition of the herbs. Recovery is generally low by using immunoaffinity column cleanup due to the acidity of the water extractive leading to a weakened binding affinity. As a solvent for dilution and neutralization, phosphate buffer saline is useful for certain herbs but not for others that have high acidity. The problem can be solved by using 0.1 M phosphate buffer, which has a higher buffering capacity and eliminates sodium chloride. The modified method was validated by the analysis of a certified reference material and shown to be useful for the determination of aflatoxins in herbal samples of high acidity.